How to convert a Number to Word in Java

In this section, we will develop a Java program that converts a given number into its corresponding word representation. For instance, if the input number is 54,297, the program will output “Fifty-Four Thousand Two Hundred Ninety-Seven”. Let’s proceed with creating the Java program for this task.

NumberToWordExample1.java

class NumberToWordExample   
{  
//user-defined static method that converts a number into words  
static void numberToWords(char num[])  
{  
//determines the number of digits in the given number  
int len = num.length;  
//checks the given number has number or not  
if (len == 0)   
{  
//if the given number is empty prints the following statement     
System.out.println("The string is empty.");  
return;  
}  
//here, we have specified the length of the number to 4  
//it means that the number (that you want to convert) should be four or less than four digits  
if (len > 4)   
{  
//if the given number is more than four-digit number, it prints the following statement    
System.out.println("\n The given number has more than 4 digits.");  
return;  
}  
//string type array for one-digit numbers    
String[] onedigit = new String[] {"Zero", "One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine"};  
//string type array for two digits numbers    
//the first index is empty because it makes indexing easy   
String[] twodigits = new String[] {"", "Ten", "Eleven", "Twelve", "Thirteen", "Fourteen", "Fifteen", "Sixteen", "Seventeen", "Eighteen", "Nineteen"};  
//string type array of tens multiples   
//the first two indexes are empty because it makes indexing easy   
String[] multipleoftens = new String[] {"",  "", "Twenty", "Thirty", "Forty", "Fifty", "Sixty", "Seventy", "Eighty", "Ninety"};  
//string type array of power of tens   
String[] poweroftens = new String[] {"Hundred", "Thousand"};  
//Used for debugging purpose only   
//the valueOf() method returns the string representation of the character array argument  
System.out.print(String.valueOf(num) + ": ");  
//checks whether the length of the given string is one or not  
if (len == 1)   
{  
//if the above condition returns true, it accesses the corresponding index and prints the value of that index  
//[num[0]-'0']: getting the number equal the decimal value of the character (assuming the char is the digit)  
System.out.println(onedigit[num[0]-'0']);  
return;  
}  
int x = 0;  
//executes until num does not become not '\0'  
while (x < num.length)   
{  
//executes if the length of the string is greater than equal to three  
if (len >= 3)   
{  
if (num[x] - '0' != 0)   
{  
System.out.print(onedigit[num[x] - '0'] + " ");  
//here length can be 3 or 4  
System.out.print(poweroftens[len - 3]+ " ");  
}  
//decrements the length of the string by 1  
--len;  
}  
//executes if the given number has two digits  
else   
{  
//the if-statement handles the numbers from 10 to 19 only     
if (num[x] - '0' == 1)   
{  
//adding the digits of the given number   
//the logic behind sum up the digits is that we will use the sum for accessing the index of the array   
//for example: 17, sum of digits = 8  
//we will access the 8th index in twodigits[] array i.e. Seventeen  
int sum = num[x] - '0' + num[x + 1] - '0';  
System.out.println(twodigits[sum]);  
return;  
}  
//the else-if statement handles the number 20 only  
//compares the tens and unit place with 2 and 0 respectively  
else if (num[x] - '0' == 2 && num[x + 1] - '0' == 0)   
{  
//executes if the above else-if condition returns true    
System.out.println("Twenty");  
return;  
}  
//the else block handles the numbers from 21 to 100  
else   
{  
int i = (num[x] - '0');  
if (i > 0)  
//prints the ith index element of the array multipleoftens[]  
System.out.print(multipleoftens[i]+ " ");  
else  
//prints space  
System.out.print("");  
//increments the variable i by 1  
++x;  
//checks whether the number is not equal to zero, it means the number has only a digit  
if (num[x] - '0' != 0)  
//prints the ith index element of the array onedigit[]  
System.out.println(onedigit[num[x] - '0']);  
}  
}  
//increments the variable i by 1  
++x;  
}  
}  
//main() method  
public static void main(String args[])  
{  
//calling the user-defined method and that invokes another predefined method toCharArray()  
//the method toCharArray() converts the given number into character array  
numberToWords("1111".toCharArray());  
numberToWords("673".toCharArray());  
numberToWords("85".toCharArray());  
numberToWords("5".toCharArray());  
numberToWords("0".toCharArray());  
numberToWords("20".toCharArray());  
numberToWords("1000".toCharArray());  
numberToWords("12345".toCharArray());  
//passing empty string   
numberToWords("".toCharArray());  
}  
}

Output

1111: One Thousand One Hundred Eleven
673: Six Hundred Seventy Three
85: Eighty Five
5: Five
0: Zero
20: Twenty
1000: One Thousand 
The given number has more than 4 digits.
The string is empty.

In the above code, the number is not limited to four digits. So, if the user enters more than 5 five digits numbers what will happen? The above program does not work for large digit numbers.

Converting Large Numbers into Words

The logic of converting large digit numbers is totally different. Let’s see how to convert large digit numbers.

NumberToWordExample2.java

import java.text.DecimalFormat;  
public class NumberToWordExample1   
{  
//string type array for one digit numbers     
private static final String[] twodigits = {"", " Ten", " Twenty", " Thirty", " Forty", " Fifty", " Sixty", " Seventy", " Eighty", " Ninety"};  
//string type array for two digits numbers   
private static final String[] onedigit = {"", " One", " Two", " Three", " Four", " Five", " Six", " Seven", " Eight", " Nine", " Ten", " Eleven", " Twelve", " Thirteen", " Fourteen", " Fifteen", " Sixteen", " Seventeen", " Eighteen", " Nineteen"};  
//defining constructor of the class  
private NumberToWordExample1()   
{  
}  
//user-defined method that converts a number to words (up to 1000)  
private static String convertUptoThousand(int number)   
{  
String soFar;  
if (number % 100 < 20)  
{  
soFar = onedigit[number % 100];  
number = number/ 100;  
}  
else   
{  
soFar = onedigit[number % 10];  
number = number/ 10;  
soFar = twodigits[number % 10] + soFar;  
number = number/ 10;  
}  
if (number == 0)   
return soFar;  
return onedigit[number] + " Hundred " + soFar;  
}  
//user-defined method that converts a long number (0 to 999999999) to string    
public static String convertNumberToWord(long number)   
{  
//checks whether the number is zero or not  
if (number == 0)   
{   
//if the given number is zero it returns zero  
return "zero";   
}  
//the toString() method returns a String object that represents the specified long  
String num = Long.toString(number);  
//for creating a mask padding with "0"   
String pattern = "000000000000";  
//creates a DecimalFormat using the specified pattern and also provides the symbols for the default locale  
DecimalFormat decimalFormat = new DecimalFormat(pattern);  
//format a number of the DecimalFormat instance  
num = decimalFormat.format(number);  
//format: XXXnnnnnnnnn  
//the subString() method returns a new string that is a substring of this string  
//the substring begins at the specified beginIndex and extends to the character at index endIndex - 1  
//the parseInt() method converts the string into integer  
int billions = Integer.parseInt(num.substring(0,3));  
//format: nnnXXXnnnnnn  
int millions  = Integer.parseInt(num.substring(3,6));  
//format: nnnnnnXXXnnn  
int hundredThousands = Integer.parseInt(num.substring(6,9));  
//format: nnnnnnnnnXXX  
int thousands = Integer.parseInt(num.substring(9,12));  
String tradBillions;  
switch (billions)   
{  
case 0:  
tradBillions = "";  
break;  
case 1 :  
tradBillions = convertUptoThousand(billions)+ " Billion ";  
break;  
default :  
tradBillions = convertUptoThousand(billions)+ " Billion ";  
}  
String result =  tradBillions;  
String tradMillions;  
switch (millions)   
{  
case 0:  
tradMillions = "";  
break;  
case 1 :  
tradMillions = convertUptoThousand(millions)+ " Million ";  
break;  
default :  
tradMillions = convertUptoThousand(millions)+ " Million ";  
}  
result =  result + tradMillions;  
String tradHundredThousands;  
switch (hundredThousands)   
{  
case 0:  
tradHundredThousands = "";  
break;  
case 1 :  
tradHundredThousands = "One Thousand ";  
break;  
default :  
tradHundredThousands = convertUptoThousand(hundredThousands)+ " Thousand ";  
}  
result =  result + tradHundredThousands;  
String tradThousand;  
tradThousand = convertUptoThousand(thousands);  
result =  result + tradThousand;  
//removing extra space if any  
return result.replaceAll("^\\s+", "").replaceAll("\\b\\s{2,}\\b", " ");  
}  
//main() method  
public static void main(String args[])   
{  
//calling the user-defined method that converts the parsed number into words  
System.out.println(convertNumberToWord(2));  
System.out.println(convertNumberToWord(99));  
System.out.println(convertNumberToWord(456));  
System.out.println(convertNumberToWord(1101));  
System.out.println(convertNumberToWord(19812));  
System.out.println(convertNumberToWord(674319));  
System.out.println(convertNumberToWord(909087531));  
System.out.println(convertNumberToWord(1000000000));  
System.out.println(convertNumberToWord(359999999));  
System.out.println(convertNumberToWord(1213000000L));  
System.out.println(convertNumberToWord(1000000));  
System.out.println(convertNumberToWord(1111111111));  
System.out.println(convertNumberToWord(3000200));  
System.out.println(convertNumberToWord(700000));  
System.out.println(convertNumberToWord(9000000));  
}  
}

Output

Two
Ninety Nine
Four Hundred Fifty Six
One Thousand One Hundred One
Nineteen Thousand Eight Hundred Twelve
Six Hundred Seventy Four Thousand Three Hundred Nineteen
Nine Hundred Nine Million Eighty Seven Thousand Five Hundred Thirty One
One Billion 
Three Hundred Fifty Nine Million Nine Hundred Ninety Nine Thousand Nine Hundred Ninety Nine
One Billion Two Hundred Thirteen Million 
One Million 
One Billion One Hundred Eleven Million One Hundred Eleven Thousand One Hundred Eleven
Three Million Two Hundred 
Seven Hundred Thousand 
Nine Million 

Converting Very Long Numbers into Words

To convert very long numbers into words, it’s important to know the names of larger numbers. Here is a table that describes the names of larger numbers:

Name Short Scale (US, English Canada, modern British, Australia, and Eastern Europe) Long Scale (French Canada, older British, Western & Central Europe)
Million 10^6 10^6
Milliard Not used 10^9
Billion 10^9 10^12
Billiard Not used 10^15
Trillion 10^12 10^18
Quadrillion 10^15 10^24
Quintillion 10^18 10^30
Sextillion 10^21 10^36
Septillion 10^24 10^42
Octillion 10^27 10^48
Nonillion 10^30 10^54
Decillion 10^33 10^60
Undecillion 10^36 10^66
Duodecillion 10^39 10^72
Tredecillion 10^42 10^78
Quattuordecillion 10^45 10^84
Quindecillion 10^48 10^90
Sexdecillion 10^51 10^96
Septendecillion 10^54 10^102
Octodecillion 10^57 10^108
Novemdecillion 10^60 10^114
Vigintillion 10^63 10^120
Centillion 10^303 10^600

Now, Let’s create a Java program that converts very long numbers into words.

NumberToWordExample3.java

import java.util.*;  
public class NumberToWordExample2   
{  
static public class ScaleUnit   
{  
private int exponent;  
private String[] names;  
private ScaleUnit(int exponent, String...names)   
{  
this.exponent = exponent;  
this.names = names;  
}  
public int getExponent()   
{  
return exponent;  
}  
public String getName(int index)   
{  
return names[index];  
}  
}  
static private ScaleUnit[] SCALE_UNITS = new ScaleUnit[]   
{  
new ScaleUnit(63, "vigintillion", "decilliard"),  
new ScaleUnit(60, "novemdecillion", "decillion"),  
new ScaleUnit(57, "octodecillion", "nonilliard"),  
new ScaleUnit(54, "septendecillion", "nonillion"),  
new ScaleUnit(51, "sexdecillion", "octilliard"),  
new ScaleUnit(48, "quindecillion", "octillion"),  
new ScaleUnit(45, "quattuordecillion", "septilliard"),  
new ScaleUnit(42, "tredecillion", "septillion"),  
new ScaleUnit(39, "duodecillion", "sextilliard"),  
new ScaleUnit(36, "undecillion", "sextillion"),  
new ScaleUnit(33, "decillion", "quintilliard"),  
new ScaleUnit(30, "nonillion", "quintillion"),  
new ScaleUnit(27, "octillion", "quadrilliard"),  
new ScaleUnit(24, "septillion", "quadrillion"),  
new ScaleUnit(21, "sextillion", "trilliard"),  
new ScaleUnit(18, "quintillion", "trillion"),  
new ScaleUnit(15, "quadrillion", "billiard"),  
new ScaleUnit(12, "trillion", "billion"),  
new ScaleUnit(9, "billion", "milliard"),  
new ScaleUnit(6, "million", "million"),  
new ScaleUnit(3, "thousand", "thousand"),  
new ScaleUnit(2, "hundred", "hundred"),  
//new ScaleUnit(1, "ten", "ten"),  
//new ScaleUnit(0, "one", "one"),  
new ScaleUnit(-1, "tenth", "tenth"),  
new ScaleUnit(-2, "hundredth", "hundredth"),  
new ScaleUnit(-3, "thousandth", "thousandth"),  
new ScaleUnit(-4, "ten-thousandth", "ten-thousandth"),  
new ScaleUnit(-5, "hundred-thousandth", "hundred-thousandth"),  
new ScaleUnit(-6, "millionth", "millionth"),  
new ScaleUnit(-7, "ten-millionth", "ten-millionth"),  
new ScaleUnit(-8, "hundred-millionth", "hundred-millionth"),  
new ScaleUnit(-9, "billionth", "milliardth"),  
new ScaleUnit(-10, "ten-billionth", "ten-milliardth"),  
new ScaleUnit(-11, "hundred-billionth", "hundred-milliardth"),  
new ScaleUnit(-12, "trillionth", "billionth"),  
new ScaleUnit(-13, "ten-trillionth", "ten-billionth"),  
new ScaleUnit(-14, "hundred-trillionth", "hundred-billionth"),  
new ScaleUnit(-15, "quadrillionth", "billiardth"),  
new ScaleUnit(-16, "ten-quadrillionth", "ten-billiardth"),  
new ScaleUnit(-17, "hundred-quadrillionth", "hundred-billiardth"),  
new ScaleUnit(-18, "quintillionth", "trillionth"),  
new ScaleUnit(-19, "ten-quintillionth", "ten-trillionth"),  
new ScaleUnit(-20, "hundred-quintillionth", "hundred-trillionth"),  
new ScaleUnit(-21, "sextillionth", "trilliardth"),  
new ScaleUnit(-22, "ten-sextillionth", "ten-trilliardth"),  
new ScaleUnit(-23, "hundred-sextillionth", "hundred-trilliardth"),  
new ScaleUnit(-24, "septillionth","quadrillionth"),  
new ScaleUnit(-25, "ten-septillionth","ten-quadrillionth"),  
new ScaleUnit(-26, "hundred-septillionth","hundred-quadrillionth"),  
};  
static public enum Scale   
{  
SHORT,  
LONG;  
public String getName(int exponent)   
{  
for (ScaleUnit unit : SCALE_UNITS)   
{  
if (unit.getExponent() == exponent)   
{  
return unit.getName(this.ordinal());  
}  
}  
return "";   
}  
}  
/** 
* Change this scale to support American and modern British value (short scale) 
* or Traditional British value (long scale) 
*/  
static public Scale SCALE = Scale.SHORT;   
static abstract public class AbstractProcessor   
{  
static protected final String SEPARATOR = " ";  
static protected final int NO_VALUE = -1;  
protected List<Integer> getDigits(long value)   
{  
ArrayList<Integer> digits = new ArrayList<Integer>();  
if (value == 0)  
{  
digits.add(0);  
}   
else   
{  
while (value > 0)   
{  
digits.add(0, (int) value % 10);  
value /= 10;  
}  
}  
return digits;  
}  
public String getName(long value)   
{  
return getName(Long.toString(value));  
}  
public String getName(double value)   
{  
return getName(Double.toString(value));  
}  
abstract public String getName(String value);  
}  
static public class UnitProcessor extends AbstractProcessor   
{  
static private final String[] TOKENS = new String[]   
{  
"one", "two", "three", "four", "five", "six", "seven", "eight", "nine", "ten", "eleven", "twelve", "thirteen", "fourteen", "fifteen", "sixteen", "seventeen", "eighteen", "nineteen"  
};  
@Override  
public String getName(String value)   
{  
StringBuilder buffer = new StringBuilder();  
int offset = NO_VALUE;  
int number;  
if (value.length() > 3)   
{  
number = Integer.valueOf(value.substring(value.length() - 3), 10);  
}   
else   
{  
number = Integer.valueOf(value, 10);  
}  
number %= 100;  
if (number < 10)   
{  
offset = (number % 10) - 1;  
//number /= 10;  
}   
else if (number < 20)   
{  
offset = (number % 20) - 1;  
//number /= 100;  
}  
if (offset != NO_VALUE && offset < TOKENS.length)   
{  
buffer.append(TOKENS[offset]);  
}  
return buffer.toString();  
}  
}  
static public class TensProcessor extends AbstractProcessor   
{  
static private final String[] TOKENS = new String[]   
{  
"twenty", "thirty", "forty", "fifty", "sixty", "seventy", "eighty", "ninety"  
};  
static private final String UNION_SEPARATOR = "-";  
private UnitProcessor unitProcessor = new UnitProcessor();  
@Override  
public String getName(String value)   
{  
StringBuilder buffer = new StringBuilder();  
boolean tensFound = false;  
int number;  
if (value.length() > 3)   
{  
number = Integer.valueOf(value.substring(value.length() - 3), 10);  
}   
else   
{  
number = Integer.valueOf(value, 10);  
}  
number %= 100;   // keep only two digits  
if (number >= 20)   
{  
buffer.append(TOKENS[(number / 10) - 2]);  
number %= 10;  
tensFound = true;  
}  
else   
{  
number %= 20;  
}  
if (number != 0)   
{  
if (tensFound)   
{  
buffer.append(UNION_SEPARATOR);  
}  
buffer.append(unitProcessor.getName(number));  
}  
return buffer.toString();  
}  
}  
static public class HundredProcessor extends AbstractProcessor   
{  
private int EXPONENT = 2;  
private UnitProcessor unitProcessor = new UnitProcessor();  
private TensProcessor tensProcessor = new TensProcessor();  
@Override  
public String getName(String value)   
{  
StringBuilder buffer = new StringBuilder();  
int number;  
if (value.isEmpty())   
{  
number = 0;  
}   
else if (value.length() > 4)   
{  
number = Integer.valueOf(value.substring(value.length() - 4), 10);  
}  
else   
{  
number = Integer.valueOf(value, 10);  
}  
number %= 1000;  // keep at least three digits  
if (number >= 100)   
{  
buffer.append(unitProcessor.getName(number / 100));  
buffer.append(SEPARATOR);  
buffer.append(SCALE.getName(EXPONENT));  
}  
String tensName = tensProcessor.getName(number % 100);  
if (!tensName.isEmpty() && (number >= 100))   
{  
buffer.append(SEPARATOR);  
}  
buffer.append(tensName);  
return buffer.toString();  
}  
}  
static public class CompositeBigProcessor extends AbstractProcessor   
{  
private HundredProcessor hundredProcessor = new HundredProcessor();  
private AbstractProcessor lowProcessor;  
private int exponent;  
public CompositeBigProcessor(int exponent)   
{  
if (exponent <= 3)   
{  
lowProcessor = hundredProcessor;  
}   
else   
{  
lowProcessor = new CompositeBigProcessor(exponent - 3);  
}  
this.exponent = exponent;  
}  
public String getToken()   
{  
return SCALE.getName(getPartDivider());  
}  
protected AbstractProcessor getHighProcessor()   
{  
return hundredProcessor;  
}  
protected AbstractProcessor getLowProcessor()   
{  
return lowProcessor;  
}  
public int getPartDivider()   
{  
return exponent;  
}  
@Override  
public String getName(String value)   
{  
StringBuilder buffer = new StringBuilder();  
String high, low;  
if (value.length() < getPartDivider())   
{  
high = "";  
low = value;  
}   
else   
{  
int index = value.length() - getPartDivider();  
high = value.substring(0, index);  
low = value.substring(index);  
}  
String highName = getHighProcessor().getName(high);  
String lowName = getLowProcessor().getName(low);  
if (!highName.isEmpty())   
{  
buffer.append(highName);  
buffer.append(SEPARATOR);  
buffer.append(getToken());  
if (!lowName.isEmpty())   
{  
buffer.append(SEPARATOR);  
}  
}  
if (!lowName.isEmpty())   
{  
buffer.append(lowName);  
}  
return buffer.toString();  
}  
}  
static public class DefaultProcessor extends AbstractProcessor   
{  
static private String MINUS = "minus";  
static private String UNION_AND = "and";  
static private String ZERO_TOKEN = "zero";  
private AbstractProcessor processor = new CompositeBigProcessor(63);  
@Override  
public String getName(String value)   
{  
boolean negative = false;  
if (value.startsWith("-"))   
{  
negative = true;  
value = value.substring(1);  
}  
int decimals = value.indexOf(".");  
String decimalValue = null;  
if (0 <= decimals)   
{  
decimalValue = value.substring(decimals + 1);  
value = value.substring(0, decimals);  
}  
String name = processor.getName(value);  
if (name.isEmpty())   
{  
name = ZERO_TOKEN;  
}   
else if (negative)   
{  
name = MINUS.concat(SEPARATOR).concat(name);   
}  
if (!(null == decimalValue || decimalValue.isEmpty()))   
{  
name = name.concat(SEPARATOR).concat(UNION_AND).concat(SEPARATOR)  
.concat(processor.getName(decimalValue)).concat(SEPARATOR).concat(SCALE.getName(-decimalValue.length()));  
}  
return name;  
}  
}  
static public AbstractProcessor processor;  
public static void main(String...args)   
{  
processor = new DefaultProcessor();  
long[] values = new long[]   
{            0,4,10,12,100,108,299,1000,1003,2040,45213,100000,100005,100010,202020,202022,999999,1000000,1000001,10000000,10000007,99999999,  
Long.MAX_VALUE,  
Long.MIN_VALUE  
};  
String[] strValues = new String[]   
{  
"0001.2","3.141592"  
};  
for (long val : values)   
{  
System.out.println(val + " = " + processor.getName(val) );  
}  
for (String strVal : strValues)   
{  
System.out.println(strVal + " = " + processor.getName(strVal) );  
}  
//generates a very large number  
StringBuilder bigNumber = new StringBuilder();  
for (int d=0; d<66; d++)   
{  
bigNumber.append( (char) ((Math.random() * 10) + '0'));  
}  
bigNumber.append(".");  
for (int d=0; d<26; d++)   
{  
bigNumber.append( (char) ((Math.random() * 10) + '0'));  
}  
System.out.println(bigNumber.toString() + " = " + processor.getName(bigNumber.toString()));  
}  
}
0 = zero
4 = four
10 = ten
12 = twelve
100 = one hundred
108 = one hundred eight
299 = two hundred ninety-nine
1000 = one thousand
1003 = one thousand three
2040 = two thousand forty
45213 = forty-five thousand two hundred thirteen
100000 = one hundred thousand
100005 = one hundred thousand five
100010 = one hundred thousand ten
202020 = two hundred two thousand twenty
202022 = two hundred two thousand twenty-two
999999 = nine hundred ninety-nine thousand nine hundred ninety-nine
1000000 = one million
1000001 = one million one
10000000 = ten million
10000007 = ten million seven
99999999 = ninety-nine million nine hundred ninety-nine thousand nine hundred ninety-nine
9223372036854775807 = nine quintillion two hundred twenty-three quadrillion three hundred seventy-two trillion thirty-six billion eight hundred fifty-four million seven hundred seventy-five thousand eight hundred seven
-9223372036854775808 = minus nine quintillion two hundred twenty-three quadrillion three hundred seventy-two trillion thirty-six billion eight hundred fifty-four million seven hundred seventy-five thousand eight hundred eight
0001.2 = one and two tenth
3.141592 = three and one hundred forty-one thousand five hundred ninety-two millionth
460012337254603456102858625760315606217629687991884189324962143290.71976470497024809296386750 = four hundred sixty vigintillion twelve novemdecillion three hundred thirty-seven octodecillion two hundred fifty-four septendecillion six hundred three sexdecillion four hundred fifty-six quindecillion one hundred two quattuordecillion eight hundred fifty-eight tredecillion six hundred twenty-five duodecillion seven hundred sixty undecillion three hundred fifteen decillion six hundred six nonillion two hundred seventeen octillion six hundred twenty-nine septillion six hundred eighty-seven sextillion nine hundred ninety-one quintillion eight hundred eighty-four quadrillion one hundred eighty-nine trillion three hundred twenty-four billion nine hundred sixty-two million one hundred forty-three thousand two hundred ninety and seventy-one septillion nine hundred seventy-six sextillion four hundred seventy quintillion four hundred ninety-seven quadrillion twenty-four trillion eight hundred nine billion two hundred ninety-six million three hundred eighty-six thousand seven hundred fifty hundred-septillionth

We hope that you understand the concept, How to convert a Number to Word in Java. For further learning, please follow tutorials.freshersnow.com.